2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

CBC Microelectronics

(MC2180)
 2.5V to 5.5V 60mohm Single Channel High-side Power Switch

MC2180 is 60mohm High-side Power Switch with Enable and Flag, fast short response (1.0us), 2.0ms turn-on time with SOT-23-5 and SOT-23 package.
It is ideally used in USB2.0/3.0, LVDS, HDMI and DP port.

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Description

The MC2180 serial products are high-side power switch with 70 mohm Rdson, available with $0.5 \mathrm{~A}, 1.0 \mathrm{~A}$, $1.5 \mathrm{~A}, 2.0 \mathrm{~A}$ and 2.5 A continuous output capability. They are suitable for $2.8 \mathrm{~V}, 3.0 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5.0 V power rail.

MC2180 has enable pin with selectable active high or low level. It also has selectable discharge feature for output. It has FLAG pin to indicate the chip status, active low with open drain output once OCP or OTP triggered.

MC2180 has very fast short response time, 1.5 us to avoid significant large current draw from input.

MC2180 has another important feature - no reverse current from output to input during shutdown.

Available Package: SOT-23-5

Features

- Integrated high-side Power MOS: 65mohm
- Operation Voltage: 2.5 V to 5.5 V
- Quiescent Current: 35uA (Typ.)
- Shutdown current: 1.0uA (Max.)
- Enable active level selectable: High/Low
- Shutdown discharge selectable: Yes/No
- Available 5 continuous current versions: $0.5 \mathrm{~A} / 1.0 \mathrm{~A} / 1.5 \mathrm{~A} / 2.0 \mathrm{~A} / 2.5 \mathrm{~A}$
- Turn-on + rising time: 2.0 ms
- Shutdown pull-low resistance: 200 ohm
- Fast short response time: 1.5us
- Input UVLO
- OCP, OTP protection and automatic release
- Deglitched FLAG output with open-drain to indicate OCP, Load short, OTP UVLO and OUT-to-IN reverse
- No reverse current after shutdown, power-off

Applications

- Notebook \& Ultrabook
- Tablet, PAD
- USB 2.0/3.0 Port, LVDS Port, HDMI Port, DP Port

PIN Configurations

Typical Application

Figure 1: Typical Application of MC2180

MC2180

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Pin description

PIN Name	PIN No.	Description
	SOT-23-5	
IN	5	Power supply input pin, using 1.0uF capacitor to ground
OUT	1	Output pin, using 1.0uF bypass capacitor is enough in most application, if distance is long in layout, please using 10uF or 22uF Capacitor in parallel 0.1uF close to load node
GND	2	Ground
EN	4	Enable pin, active low or high. Must be set high or low, can not be left floating
FLAG	3	Flag output with open drain, active low. Connect a pull-up resistor (10k) to input.

Function Block

Figure 2. MC2180 function block

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Ordering Information

Order PN	Output Current	Enable	Output Discharge	Marking ID	Package	Operation Temperature
MC2180GA1STR	0.5A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA2STR	0.5A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA3STR	0.5A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA4STR	0.5A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB1STR	1.0A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB2STR	1.0A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB3STR	1.0A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB4STR	1.0A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC1STR	1.5A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC2STR	1.5 A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC3STR	1.5A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC4STR	1.5A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD1STR	2.0A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD2STR	2.0A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD3STR	2.0A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD4STR	2.0A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE1STR	2.5 A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE2STR	2.5A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE3STR	2.5 A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE4STR	2.5A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA1SRTR	0.5A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA2SRTR	0.5A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA3SRTR	0.5A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA4SRTR	0.5A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB1SRTR	1.0A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB2SRTR	1.0A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB3SRTR	1.0A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB4SRTR	1.0A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC1SRTR	1.5A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC2SRTR	1.5A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC3SRTR	1.5A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC4SRTR	1.5A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD1SRTR	2.0A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

MC2180GD2SRTR	2.0 A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD3SRTR	2.0 A	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD4SRTR	2.0 A	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE1SRTR	2.5 A	Active Low	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE2SRTR	2.5 A	Active Low	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE3SRTR	$2.5 A$	Active High	Yes		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE4SRTR	$2.5 A$	Active High	No		SOT-23	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA1NTR	0.5 A	Active Low	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA2NTR	$0.5 A$	Active Low	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA3NTR	$0.5 A$	Active High	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GA4NTR	$0.5 A$	Active High	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB1NTR	1.0 A	Active Low	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB2NTR	$1.0 A$	Active Low	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB3NTR	1.0 A	Active High	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GB4NTR	1.0 A	Active High	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC1NTR	$1.5 A$	Active Low	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC2NTR	$1.5 A$	Active Low	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC3NTR	$1.5 A$	Active High	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GC4NTR	$1.5 A$	Active High	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD1NTR	$2.0 A$	Active Low	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD2NTR	$2.0 A$	Active Low	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD3NTR	2.0 A	Active High	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GD4NTR	$2.0 A$	Active High	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE1NTR	$2.5 A$	Active Low	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE2NTR	$2.5 A$	Active Low	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE3NTR	$2.5 A$	Active High	Yes		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
MC2180GE4NTR	$2.5 A$	Active High	No		SOT-23-5	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

Note 1
Based on ROHS Y2012 spec, Halogen free can cover Lead free, so for most package types MicroAudio does only product Halogen free products instead of lead free products.

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Absolute Maximum Ratings (Note 2)

Parameter	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {IN }}$ to GND	-0.5 to 6.0	V
Input Voltage for Enable	$\mathrm{V}_{\text {EN }}$ to GND	-0.5 to 6.0	V
Operation junction temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 Seconds)	$\mathrm{T}_{\text {LEAD }}$	260	${ }^{\circ} \mathrm{C}$
Thermal (Note 2)	SOT23-5	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD MM	ESD $_{\text {MM }}$	400	V
ESD HBM	$\mathrm{ESD}_{\text {HBM }}$	4000	V
ESD CDM	$\mathrm{ESD}_{\text {CDM }}$	1000	V

Note 2

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
2. Using $2 o z$ dual layer (Top, Bottom) FR4 PCB with $4 \times 4 \mathrm{~mm}^{2}$ cooper as thermal PAD

Recommended Operating Conditions

Parameter	Symbol	Value	Unit
Input Voltage	V_{IN}	$2.5 \sim 5.5$	V
Ambient Operation Temperature Range	T_{A}	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$

MC2180

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Electrical Characteristics (Note 3)

Test Condition: $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\text {OUT }}=1.0 \mathrm{uF}, \mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=4.7 \mathrm{uF}$ unless otherwise specified, all limits are test at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, and bold type is limited at $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Voltage	VIN		2.5		5.5	V
Input Under Voltage Lock-out	Vuvio		1.8	2.1	2.4	V
Under Voltage Lock-out Hysteresis Voltage	Vuvlohy			0.2		V
Switch ON Resistance	R ${ }_{\text {dson }}$	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1.0 \mathrm{~A}$		65	90	m Ω
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=1.0 \mathrm{~A}$		65	90	$\mathrm{m} \Omega$
Quiescent Current	I_{Q}	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$		40	70	UA
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$		35	60	uA
Shutdown Current	Ishutdown			0.1	1.0	uA
Current Limit	$\mathrm{I}_{\text {LIMIT }}$	$\mathrm{V}_{\text {OUt }}=4.0 \mathrm{~V}$	0.7	1.0	1.3	
		$\mathrm{V}_{\text {OUt }}=4.0 \mathrm{~V}$	1.1	1.5	1.9	A
		$\mathrm{V}_{\text {OUt }}=4.0 \mathrm{~V}$	1.6	2.2	2.8	A
		$\mathrm{V}_{\text {OUt }}=4.0 \mathrm{~V}$	2.1	2.6	3.2	A
MC2180E(2.5A)		$V_{\text {OUt }}=4.0 \mathrm{~V}$	2.6	3.2	3.8	A
Fold-back short current	ISHORT	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		0.7		A
		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		1.0		A
		$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$		1.5		A
		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		1.8		A
MC2180E(2.5A)		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		2.2		A
Leakage Current (Vin to Vout)	ILEAKAGE	Disable EN pin, $\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$		0.1	1.0	UA
Reverse Current (Vout to Vin)	IREVERSE	Disable EN pin, $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {IN }}$		0.1	1.0	uA
Enable Active High Voltage	$\mathrm{V}_{\text {ENH }}$		1.5		5.5	V
Enable Active Low Voltage	$\mathrm{V}_{\text {ENL }}$		0		1.0	V
Enable pin input current (Note 3)	$\mathrm{I}_{\text {EN }}$	Force 0 V to 5.5 V at EN pin	-1.0		1.0	uA
Output pull-low resistor	$\mathrm{R}_{\text {PULL }}$	with discharge device		200	300	Ω
Output turn-on + rising time	ton	From EN active to output rising $90 \%, \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10$	1.0	2.0	3.0	ms
FLAG response delay time	$\mathrm{t}_{\text {FLAG_D }}$	From OCP trigger to FLAG active	5.0	10.0	15.0	ms
FLAG pin output voltage	$V_{\text {FLAG }}$	FLAG active, $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$		0.5	1.0	V
FLAG pin leakage	Iflag_L	FLAG disable, force 5.0V		0.1	1.0	uA
Load short response time	$\mathrm{t}_{\text {SHORT }}$			1.5		us
Out to In reverse trigger voltage	VoIR	Enable active, (Vout - $\mathrm{V}_{\text {IN }}$)		20	50	mV
Out to In reverse deglitch time	$\mathrm{t}_{\text {OIR }}$	Enable active, Duration time		5	10	ms
Out to In reverse trigger current	Ioir	Enable active, From output to input		200	500	mA
Out to In reverse current after trigger	IoIRT	output to input leakage after trigger		2.0		uA
Thermal shutdown temperature	Totp			140		${ }^{\circ} \mathrm{C}$
Thermal shutdown hysteresis	THY			20		${ }^{\circ} \mathrm{C}$
Thermal resistance (junction-case)	${ }^{\text {Jc }}$	SOT-23-5		20		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 3:

1. All devices are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$; all specifications over the automotive temperature range is guaranteed by design, not production tested. Parameter is guaranteed by design.
2. No parasitic diode between EN pin and VIN pin.

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Figure 3. output short response time

t_{R} - output rising time
t_{F} - output falling time

$t_{\text {ON }}$ - the time from 50% of Enable rising to 90% of Vout rising edge $t_{\text {off }}$ - the time from 50% of Enable falling to 10% of Vout falling edge

Figure 4. turn-on/off and rising/falling time

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Characteristics

Figure-5 Quiescent current vs. supply voltage (room/high/low temperature)

Figure-7 Enable active voltage vs. temperature ($\mathrm{VIN}=3.3 \mathrm{~V} / 5.0 \mathrm{~V}$)

Figure-9 UVLO voltage vs. temperature (rising/falling)
Figure-10 UVLO voltage vs. input voltage (rising/falling)

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Figure-13 short current vs. input voltage ($\mathrm{T}=25$)
Figure-14 short current vs. Temperature (3.0V/3.3V/5.0V)

Figure-15 output voltage vs. output current (A, 3.3V/5.0V, room/high/low)

Figure-17 output voltage vs. output current (C, 3.3V/5.0V, room/high/low)

Figure-16 output voltage vs. output current (B, 3.3V/5.0V, room/high/low)

Figure-18 output voltage vs. output current ($\mathrm{D}, 3.3 \mathrm{~V} / 5.0 \mathrm{~V}$, room/high/low)

Figure-19 Current limit vs. temperature (VIN=3.3V/5.0V)

Figure-20 flag deglitch time vs. input voltage (room/high/low)

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Figure-21 shutdown current vs. input voltage (room/high/low)

Figure-23 Reverse current vs. input voltage (room/high/low)

Figure-25 turn-on and rising time (3.3V, 1.0uF, No Load/10ohm)

Figure-22 shutdown current vs. temperature (3.3V/5.0V)

Figure-26 turn-on and rising time (5.0V, 1.0uF, No Load/10ohm)

Figure-27 turn-off and falling time (3.3V, 1.0uF, No Load/10ohm)

Figure-28 turn-off and falling time (5.0V, 1.0uF, No Load/10ohm)

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Figure-29 inrush current with resistance load (3.3V, 1.0uF, 1.6 ohm)

Figure-31 inrush current with capacitance load (3.3V, 4700uF, 10ohm)

Figure-33 thermal shutdown (3.3V, 1.0uF, 1.0ohm, EN/VO/IN/FLAG)

Figure-30 inrush current with resistance load (5.0V, 1.0uF, 1.6ohm)

Figure-32 inrush current with capacitance load (5.0V, 4700uF, 10ohm)

Figure-34 thermal shutdown (3.3V, 1.0uF, 1.0ohm, EN/VO/IN/FLAG)

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Figure-37 inrush short response (5.0V, VIN, VOUT, IOUT)

Figure-39 short response at power-up(5.0V, VIN, VOUT, IOUT, EN, FLAG)

Figure-38 short response at power-on (5.0V, VIN, VOUT, IOUT, EN, FLAG)

Figure-40 short response at power-up(3.3V, VIN, VOUT, IOUT, EN, FLAG)

Figure-41 reverse voltage protection response(3.3V, VIN, VOUT, IOUT, EN, FLAG)

Figure-42 reverse voltage protection response(5.0V, VIN, VOUT, IOUT, EN, FLAG)

Figure-43 reverse voltage recovery response(3.3V, VIN, VOUT, IOUT, EN, FLAG)

Figure-44 reverse voltage recovery response(5.0V, VIN, VOUT, IOUT, EN, FLAG)

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Function Descriptions

Input and Output

IN (input) is the chip power supply connection to the logic circuit and the drain of the power MOSFET. OUT (output) is the source of the power MOSFET. In a typical application, current flows through the switch from IN to OUT. Both OUT pins must be connected together to the load.

Thermal Shutdown

Thermal shutdown protects MC2180 from excessive power dissipation. If the die temperature exceeds $140^{\circ} \mathrm{C}$, the MOSFETS is turned-off and turn-on again once the die temperature drops to $120^{\circ} \mathrm{C}$. Thermal shutdown circuit functions only when the device is enabled.

UVLO

UVLO (under-voltage-lockout) prevents the power MOSFET from turning-on until input voltage exceeds 2.1V (Typ.). If the input voltage drops below 2.1 V (Typ.), UVLO feature turns-off the power MOSFET.

Over Current Trigger Point and Fold-back Load short

The MC2180 has 5 versions to offer $0.5 \mathrm{~A}, 1.0 \mathrm{~A}, 1.5 \mathrm{~A}, 2.0 \mathrm{~A}$ and 2.5 A output current continually, and typical over current trigger point is $1.0 \mathrm{~A}, 1.5 \mathrm{~A}, 2.2 \mathrm{~A}, 2.6 \mathrm{~A}$ and 3.2 A respectively. Also once load is short to ground, output current is limited typically at $0.7 \mathrm{~A}, 1.0 \mathrm{~A}, 1.5 \mathrm{~A}, 1.8 \mathrm{~A}$ and 2.2 A respectively with fold-back. See below table.

Part No.	Output continuous current (A)	Current Limit or Over current Trigger			Fold-back load short current
		Min.	Typ.	Max.	
MC2180A	1.0	1.1	1.0	1.3	1.0
MC2180B	1.5	1.6	2.2	1.9	1.5
MC2180C	2.0	2.1	2.2	3.2	1.8
MC2180D	2.5	2.6	3.2	3.2	2.2
MC2180E					

Output Reverse-Voltage Protection

The output reverse-voltage protection turns off the power MOSFET whenever the output voltage is higher than the input voltage by 20 mV (typ) with duration 5 ms (typ) and the MOSFET switch will turn on when output reverse-voltage condition is removed.

FLAG Function

The FLAG is output to indicate over current or over temperature, it is active low with open-drain output. when an over current condition is encountered after 10 ms deglitch timeout. The output remains asserted until the over-current condition is removed. Over temperature condition is also reported immediately, FLAG is also asserted (active low) in output reverse-voltage condition with typical 5 ms deglitch timeout period until the output reverse-voltage condition is removed.

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Applications Information

Supply Filtering

A $1 \mu \mathrm{~F}$ bypass capacitor from IN to GND, close to the MC2180 is strongly recommended to depress supply transients. Without a bypass capacitor, an output short may cause sufficient ringing on the input (from supply lead inductance) to damage internal control circuitry. Input transients must not exceed the absolute maximum supply voltage (6.0V) even for a short duration.

Enable

EN must be driven logic high or logic low for a clearly defined input. Floating the input may cause unpredictable operation. EN should not be allowed to go negative voltage comparison to GND. There is no parasitic ESD Diodes between EN and VIN.

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Package Outline Dimensions

Recommended PAD Layout Pattern

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

Taping Specification

Feed Direction

Package Type	Reel size	Quantity/Reel
SOT-23-5	$13 "$	3,000

2.5V to 5.5V 70mohm Single Channel High-Side Power Switch

π

CBC Microelectronics Co.,Ltd

http://www.cbcv.net

IMPORTANT NOTICE

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2014.

