

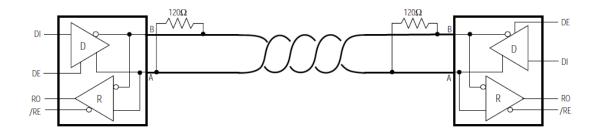
RS485 Transceivers

Feature

- Fail-safe circuitry
- Low power consumption
- Up to 128 transceivers can be attached to the bus
- Applications
- RS-485 Communications
- Level Translators
- Security Equipment

ESD: $\geq \pm 15 \text{kV}$

Maximum transmission rate: 10Mbps


- SOP8 Package
- Industrial Control Equipment
- Watt-hour meter

General Description

The MB2485 is high-speed transceivers for RS-485 communication, which contain one driver and one receiver. The MB2485 feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be a logic

Typical application circuit

high if all transmitters on a terminated bus are disabled (high impedance). The MB2485 driver slew rates are not limited, making transmit speeds up to 10Mbps possible.. And this device has a 1/8-unit-load receiver input impedance that allows up to 128 transceivers on the bus.

Absolute Maximum Ratings (TA=25°C)

Supply Voltage (VCC)+7V
Control Input Voltage (/RE, DE)0.3~Vcc+0.3V
Driver Input Voltage (DI)
Driver Output Voltage (A,B) $\pm 13V$

Receiver Input Voltage (A,B) $\pm 13V$ Receiver Output Voltage (RO) -0.3-Vcc+0.3VOperating Temperature (TOPR)....... -40 °C++85 °C Storage Temperature (TSTG)........ -65 °C++150 °C

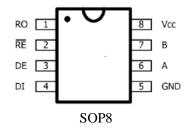
DC ELECTRICAL CHARACTERISTICS (VCC=5V, TA=25°C)¹

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	V _{OD1}					VCC	V
Differential Driver Output	V _{OD2}			1.8			V
Change in Magnitude of Differential Output Voltage	ΔV_{OD}	D 070 E				0.2	V
Driver Common-Mode Output Voltage	V _{OC}	$R=27\Omega$, Figure 1		1.0		3.0	V
Change in Magnitude of Common-Mode Voltage ²	$\Delta V_{\rm OC}$					0.2	V
Input High Voltage	V _{IH}	DE, DI, /RE		2.0			V
Input Low Voltage	VIL	DE, DI, /RE				0.8	V
DI Input Hysteresis	V_{HYS}				100		mV
Driver Input Current (A And B)	Ţ	VIN=12V	DE=0V,			150	uA
	I_{IN1}	VIN=-7V	Vcc=0V/5.25V	-150			uA
Driver Short-Circuit Output Current ³	I _{OSD}	A and B	Short-Circuit	-100		100	mA
Receiver Differential Threshold Voltage	V_{TH}	-7V < V _{CM} < 12V		-200	-125	-50	mV
Receiver Input Hysteresis	$ riangle V_{TH}$				40		mV
Receiver Output High Voltage	V _{OH}	I _O =-4mA, V _{ID}	=-50mV	VCC-1			V
Receiver Output Low Voltage	V _{OL}	Io=4mA, VID=	-200mV			0.4	V
Three-State Output Current at Receiver	I _{OZR}	0.4V≤Vo≤2.4V				±1	μΑ
Receiver Input Resistance	R _{IN}	-7V≤V _{CM} ≤1	2V	96			KΩ
Receiver Output Short-Circuit Current	I _{OSR}	$0V \leq V_{RO} \leq VC$	CC	±7		±100	mA
Supply Current		DE=VCC	No Load		450	900	μΑ
	I _{CC}	DE=GND	/RE=DI=VCC/G ND		450	600	μΑ
Supply Current in Shutdown Mode	I _{SHDN}	DE=GND, /RE=VCC, DI=VCC/GND				10	μΑ

Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.

RS485 Transceivers

Note 2: ΔV_{00} and ΔV_{0c} are the changes in V_{00} and V_{0c} , respectively, when the DI input changes state. Note 3: Maximum current level applies to peak current just prior to foldback-current limiting; minimum current level applies during current limiting.


SWITCHING CHARACTERISTICS (VCC=5V, TA=25°C)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Driver Input to Output	t _{DPLH}			30	60	ns
	t _{DPHL}			30	60	ns
Driver Output Skew T _{DPLH} – T _{DPHL}	t _{DSKEW}	Figure 3 and 5, R_{DIFF} =54 Ω C_{L1} = C_{L2} =100pF			20	ns
Driver Rise or Fall Time	t _{DR} , t _{DF}			30		ns
Maximum Data Rate	F _{MAX}		10			Mbps
Driver Enable to Output High	t _{DZH}	Figure 4 and 6, C_L =100pF			70	ns
Driver Disable Time from High	t _{DHZ}	S2 closed			70	ns
Driver Enable to Output Low	t _{DZL}	F: 4 16 0 100 F			70	ns
Driver Disable Time from Low	t _{DLZ}	Figure 4 and 6, C _L =100pF S1 closed			70	ns
Receiver Input to Output	t _{RPLH} t _{RPHL}	Figure 7 and 9, $ V_{ID} \!\geqslant$		90	250	ns
T _{RPLH} -T _{RPHL} Differential Receiver Skew	t _{rskd}	2.0V, rise and fall time of $V_{ID} \le 15$ ns		30		ns
Receiver Enable to Output Low	t _{RZL}	Figure 2 and 8, C_{RL} =15pF		30	70	ns
Receiver Disable Time from Low	t _{RLZ}	S1 closed		30	70	ns
Receiver Enable to Output High	t _{RZH}	Figure 2 and 8, C_{RL} =15pF		30	70	ns
Receiver Disable Time from High	t _{RHZ}	S2 closed		30	70	ns
Time to Shutdown	t _{SHDN}			200	600	ns

Pin Assignment

Pin Description

PIN	NAME	FUNCTION
1	RO	Receiver Output, When RE is low and if A - B \geq -50mV, RO will be high; if A - B \leq -200mV, RO will be
		low.
2	/RE	Receiver Output Enable. Drive RE low to enable RO; RO is high impedance when RE is high. Drive RE high
2	/KE	and DE low to enter low-power shutdown mode.
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is
3	DE	low. Drive RE high and DE low to enter low-power shutdown mode.
4	DI	Driver Input. With DE high, a low on DI forces noninverting output low and inverting output high.
5	GND	Ground
6	А	Noninverting Receiver Input and Noninverting Driver Output
7	В	Inverting Receiver Input and Inverting Driver Output
8	VCC	Positive Supply

Function Tables

• TRANSMITTING

INPUTS			OUTPUTS		
/RE	DE	DI	А	В	
Х	1	1	1	0	
X	1	0	0	1	
0	0	Х	High-Z	High-Z	
1	0	Х	Shute	down	

• **RECEIVING**

	INPUTS		OUTPUT
/RE	DE	A-B	RO
0	Х	≥-0.05V	1
0	Х	≪-0.2V	0
0	Х	Open/shorted	1
1	1	Х	High-Z
1	0	Х	Shutdown

MB2485

RS485 Transceivers

Test circuit

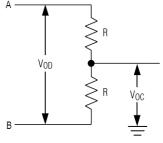


Figure 1. Driver DC Test Load

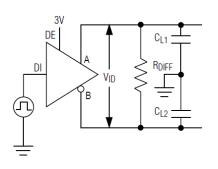


Figure 3. Driver Timing Test Circuit

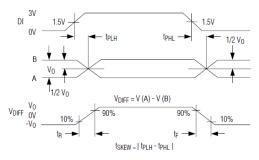


Figure 5. Driver Propagation Delays

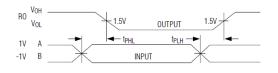


Figure 7. Receiver Propagation Delays

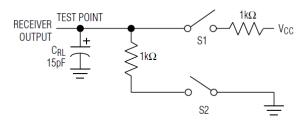


Figure 2. Receiver Enable/Disable Timing Test Load

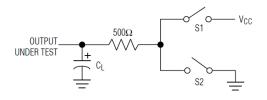
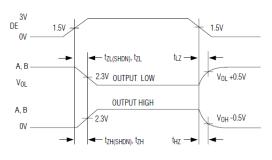
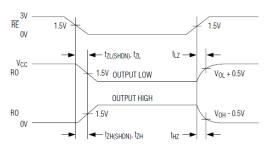
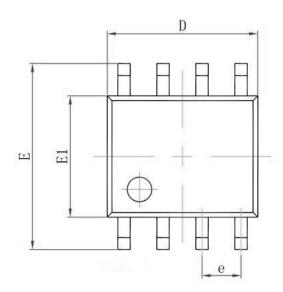
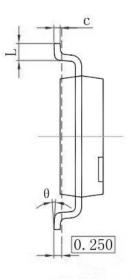
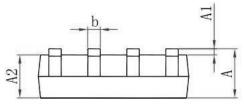



Figure 4. Driver Enable/Disable Timing Test Load


Figure 8. Receiver Enable and Disable Times

SOP8 Package Information

Sumbal	Dimensions I	n Millimeters	Dimensior	ns In Inches
Symbol	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
e	1.270 (BSC)		0.050	(BSC)
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.031
θ	0°	8°	0°	8°

RS485 Transceivers

http://www.cbcv.net

IMPORTANT NOTICE

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2021.

Mar. 2018 Rev. 1.3