

MB78MXXE Series

1A Low Power LDO

Features

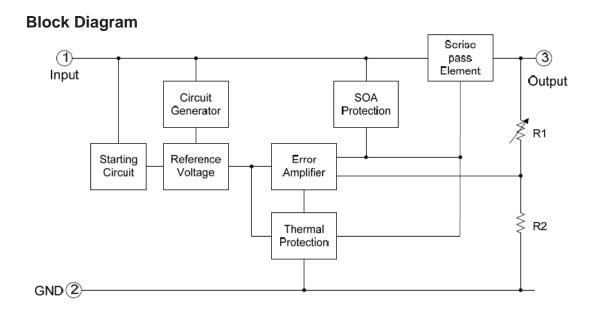
- Output Current of 1A
- Output transistor safe area protection
- No external components
- Package: TO252

General Description

MB78MXXE is three-terminal positive regulators. One of these regulators can deliver up to 1A of output current. When used as a replacement for a

Zener diode-resistor Combination, an effective improvement in output impedance can be obtained, together with lower quiescent current.

Pin Configuration


TO252 (Top View)

PIN NO.	PIN NAME	FUNCTION
1	VIN	Input voltage pin
2	GND	Ground pin
3	VOUT	Output voltage pin

MB78MXXE Series

1A Low Power LDO

Absolute Maximum Ratings (Ta=25℃)

Parameter	Rating	Unit
Input supply voltage: VIN	35	V
MAX. Output current:lout	1000	mA
MAX Power:Pmax	1	W
Maximum junction temperature:Tj	-25~125	${\mathbb C}$
Storage temperature:Tstr	-55~125	${\mathbb C}$
Soldering temperature and time	+260(Recommended 10S)	${\mathbb C}$

Note: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

MB78MXXE Series

1A Low Power LDO

Electrical Characteristics

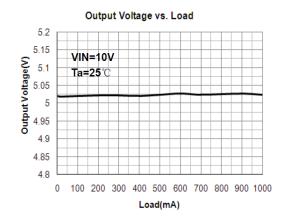
(Cin=0.33uF, Co=0.1uF, $0 \le Tj \le 125^{\circ}C$, unless otherwise noted)

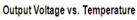
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage		Io=40mA, VIN=10V	0.964vout	vout	1.036vout		
	Vout	lo=1mA~40mA	0.96vout	vout	1.04vout	V	
		VIN=7V~18V	0.960001				
		Io=10mA	0.95vout	vout	1.05vout		
		VIN=10V	0.95V0ut				
Line Regulation	LNR	VIN=7V~18V, Io=40mA	-150	-	150	mV	
		VIN=8V~18V, Io=40mA	-100	-	100	IIIV	
Load Regulation	LDR	VIN=10V, Io=1mA~100mA	-60	1	60	m)/	
		VIN=10V, Io=1mA~40mA	-30	ı	30	mV	
Dropout Voltage	V_{DIF}	Tj=25℃,lo=500mA	-	1.7	-	V	
Quiescent Current	lα	VIN=10V	-	1.5		mA	
Quiescent Current Change	\triangle I $_{Q}$	VIN=8V~18V, I ₀ =40mA	-1.5	-	1.5		
		VIN=10V, IOUT=1mA~40mA,	-0.1	-	0.1	mA	

LNR: Line Regulation. The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

LDR: Load Regulation. The change in output voltage for a change in load current at constant chip temperature.

7

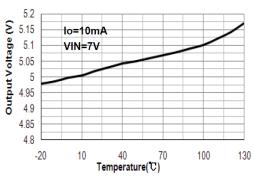

10

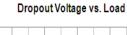

MB78MXXE Series

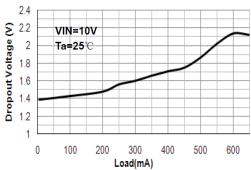
1A Low Power LDO

Typical Performance Characteristics

Output Voltage vs. Input voltage 5.2 5.15 5.05 5.05 5.05 4.95 4.95 Ta=25℃ lo=500mA_ lo=100mA 4.85 4.8


16


Input voltage(V)


19

22

13

1A Low Power LDO

Operation Description

MB78MXXE is three-terminal positive regulators. One of these regulators can deliver up to 1A of output current. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33µFor larger tantalum, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Typical Application

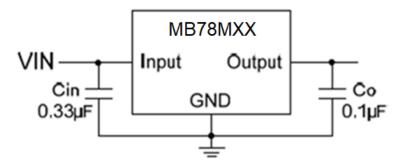


Fig.1 Fixed Output Regulator

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- Cin is required if regulator is located an appreciable distance from power supply filter.
- •Co is not needed for stability; however, it does improve transient response.

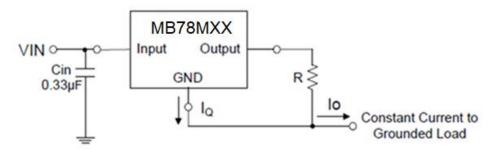
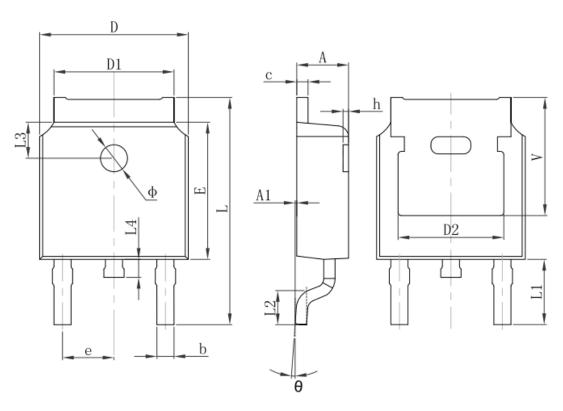


Fig.2 Constant Current Regulator

The MB78MXX regulator can also be used as a current source when connected as Fig.2. In order to minimize dissipation the MB78XX is chosen in this application. Resistor R determines the current as


$$I_{o} = \frac{5V}{R} + I_{Q}$$

1A Low Power LDO

Package Information

TO-252-2L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimension	Dimensions In Inches		
	Min.	Max.	Min.	Max.		
Α	2.200	2.400	0.087	0.094		
A1	0.000	0.127	0.000	0.005		
b	0.660	0.860	0.026	0.034		
С	0.460	0.580	0.018	0.023		
D	6.500	6.700	0.256	0.264		
D1	5.100	5.460	0.201	0.215		
D2	4.830	4.830 REF.		REF.		
E	6.000	6.200	0.236	0.244		
е	2.186	2.386	0.086	0.094		
L	9.800	10.400	0.386	0.409		
L1	2.900	REF.	0.114	REF.		
L2	1.400	1.700	0.055	0.067		
L3	1.600	REF.	0.063	REF.		
L4	0.600	1.000	0.024	0.039		
Ф	1.100	1.300	0.043	0.051		
θ	0°	8°	0°	8°		
h	0.000	0.300	0.000	0.012		
V	5.350	REF.	0.211 REF.			

1A Low Power LDO

http://www.cbcv.net

IMPORTANT NOTICE

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2021.