

Features

• Single-Supply Operation from +1.8V ~ +6V

• Rail-to-Rail Input / Output

• Gain-Bandwidth Product: 1MHz (Typ)

Low Input Bias Current: 1pA (Typ)

• Low Offset Voltage: 3.5mV (Max)

Quiescent Current: 75µA per Amplifier (Typ)

• Embedded RF Anti-EMI Filter

• Operating Temperature: -40°C ~ +125°C

• Small Package:

MA6001 Available in SOT23-5 and SC70-5 Packages
MA6002 Available in SOP-8 and MSOP-8 Packages
MA6004 Available in SOP-14 and TSSOP-14 Packages

General Description

The MA600X family have a high gain-bandwidth product of 1MHz, a slew rate of 0.8V/µs, and a quiescent current of 75µA/amplifier at 5V. The MA600X family is designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3.5mV for MA600X family. They are specified over the extended industrial temperature range (-40°C to +125°C). The operating range is from 1.8V to 6V. The MA6001 single is available in Green SC70-5 and SOT23-5 packages. The MA6002 dual is available in Green SOP-8 and MSOP-8 packages. The MA6004 Quad is available in Green SOP-14 and TSSOP-14 packages.

Applications

- ASIC Input or Output Amplifier
- Sensor Interface
- Medical Communication
- Smoke Detectors

- Audio Output
- Piezoelectric Transducer Amplifier
- Medical Instrumentation
- Portable Systems

Pin Configuration

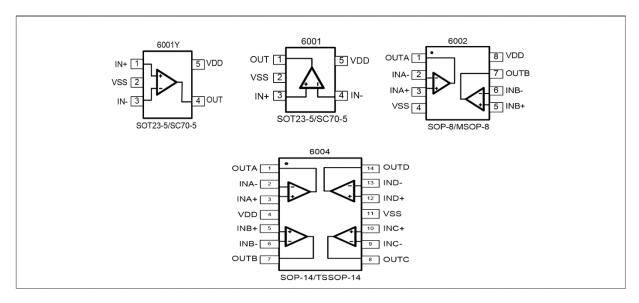


Figure 1. Pin Assignment Diagram

Absolute Maximum Ratings

Condition	Min	Max		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+125°C		
Junction Temperature	+16	0°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+26	0°C		
Package Thermal Resistance (T _A =+25 ℃)				
SOP-8, θ _{JA}	125°	C/W		
MSOP-8, θ _{JA}	216°	C/W		
SOT23-5, θ _{JA}	190°	C/W		
SC70-5, θ _{JA}	333°	333°C/W		
ESD Susceptibility				
НВМ	6K	6KV		
MM	400	400V		

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

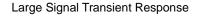
Package/Ordering Information

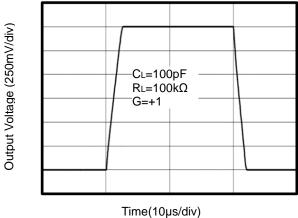
MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
		MA6001-CR	SC70-5	Tape and Reel,3000	6001
MA6001	MA6001-TR		SOT23-5	Tape and Reel,3000	6001
WAGUUT	Single	MA6001Y-CR	SC70-5	Tape and Reel,3000	6001Y
		MA6001Y-TR	SOT23-5	Tape and Reel,3000	6001Y
MACOOO	Duel	MA6002-SR	SOP-8	Tape and Reel,4000	MA6002
WAGUUZ	MA6002 Dual	MA6002-MR	MSOP-8	Tape and Reel,3000	MA6002
MAGOOA	Ouad	MA6004-TR	TSSOP-14	Tape and Reel,3000	MA6004
MA6004 Qua	Quad	MA6004-SR	SOP-14	Tape and Reel,2500	MA6004

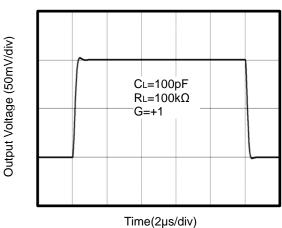
2

Electrical Characteristics

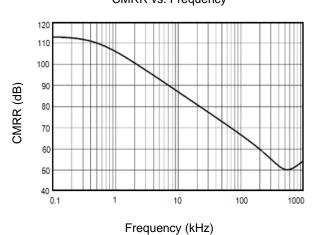
(At VS = +5V, RL = $100k\Omega$ connected to VS/2, and VOUT = VS/2, unless otherwise noted.)

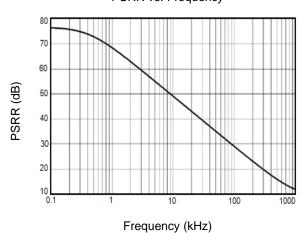

			MA6001/2/4					
PARAMETER	SYMBOL	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE				
			+25℃	+25℃	-40℃ to +85℃	UNITS	MIN/MAX	
INPUT CHARACTERISTICS								
Input Offset Voltage	Vos	V _{CM} = V _S /2	0.8	3.5	5.6	mV	MAX	
Input Bias Current	lв		1			pA	TYP	
Input Offset Current	los		1			pA	TYP	
Common-Mode Voltage Range	V _{СМ}	V _S = 5.5V	-0.1 to +5.6			V	TYP	
Common Made Dejection Datio	CMDD	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	70	62	62	dB		
Common-Mode Rejection Ratio	CMRR	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6V	68	56	55		MIN	
Open Lean Voltage Coin	Λ	$R_L = 5k\Omega$, $V_O = +0.1V$ to $+4.9V$	80	70	70	dB	MINI	
Open-Loop Voltage Gain	Aol	$R_L = 10k\Omega$, $V_O = +0.1V$ to $+4.9V$	100	94	85		MIN	
Input Offset Voltage Drift	ΔVοs/Δτ		2.7			μV/°C	TYP	
OUTPUT CHARACTERISTICS								
	V _{OH}	R _L = 100kΩ	4.997	4.980	4.970	V	MIN	
Outrat Vallage Outrag force Dall	Vol	R _L = 100kΩ	5	20	30	mV	MAX	
Output Voltage Swing from Rail	V _{OH}	$R_L = 10k\Omega$	4.992	4.970	4.960	V	MIN	
	V _{OL}	R _L = 10kΩ	8	30	40	mV	MAX	
Outrat Outra	Isource	D = 400 t= 1/ /0	84	60	45	A	NAINI	
Output Current	I _{SINK}	$R_L = 10\Omega$ to $V_S/2$	75	60	45	mA	MIN	
POWER SUPPLY							•	
0 " 11" 5				1.8	1.8	V	MIN	
Operating Voltage Range				6	6	V	MAX	
Power Supply Rejection Ratio	PSRR	$V_S = +2.5V \text{ to } +6V, V_{CM} = +0.5V$	82	60	58	dB	MIN	
Quiescent Current / Amplifier	lα		75	110	125	μΑ	MAX	
DYNAMIC PERFORMANCE (CL	= 100pF)				•			
Gain-Bandwidth Product	GBP		1			MHz	TYP	
Slew Rate	SR	G = +1, 2V Output Step	0.8			V/µs	TYP	
Settling Time to 0.1%	ts	G = +1, 2V Output Step	5.3			μs	TYP	
Overload Recovery Time		V _{IN} ·Gain = V _S	2.6			μs	TYP	
NOISE PERFORMANCE	•							
V II N I B "		f = 1kHz	27			nV/\sqrt{Hz}	TYP	
Voltage Noise Density	en	f = 10kHz	20			nV/\sqrt{Hz}	TYP	

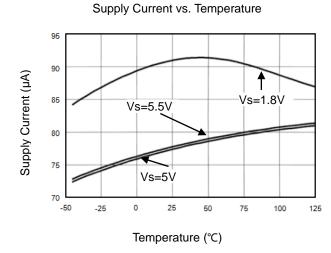

3


Typical Performance characteristics

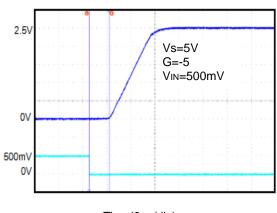
At T_A =+25°C, V_S =5V, R_L =100K Ω connected to V_S /2 and V_{OUT} = V_S /2, unless otherwise noted.




Small Signal Transient Response

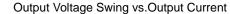


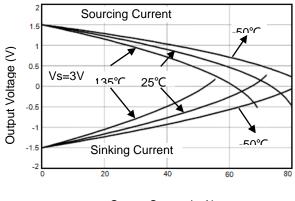
CMRR vs. Frequency



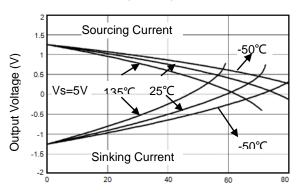
PSRR vs. Frequency

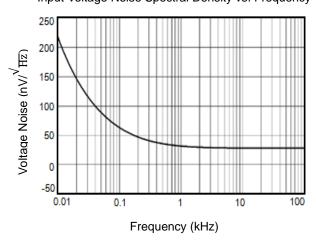
Overload Recovery Time



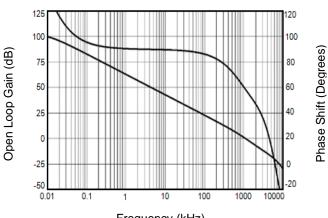

Time(2µs/div)

Typical Performance characteristics


At $T_A=+25^{\circ}C$, $R_L=100K\Omega$ connected to $V_S/2$ and $V_{OUT}=V_S/2$, unless otherwise noted.


Output Current(mA)

Output Voltage Swing vs. Output Current



Output Current(mA)

Input Voltage Noise Spectral Density vs. Frequency

Open Loop Gain, Phase Shift vs. Frequency

Frequency (kHz)

Application Note

Size

MA600X family series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the MA600X family packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

MA600X family series operates from a single 1.8V to 6V supply or dual ± 0.9 V to ± 3 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 75µA per channel) of MA600X family will help to maximize battery life. They are ideal for battery powered systems.

Operating Voltage

MA600X family operates under wide input supply voltage (1.8V to 6V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime.

Rail-to-Rail Input

The input common-mode range of MA600X family extends 100mV beyond the supply rails (V_{SS}-0.1V to V_{DD}+0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Mar. 2020 Rev. 1.1

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of MA600X family can typically swing to less than 10mV from supply rail in light resistive loads (>100k Ω), and 60mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The MA600X family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2 shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

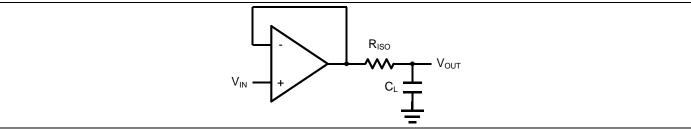


Figure 2 Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

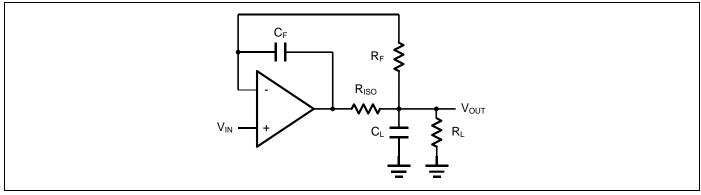


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using MA600X family.

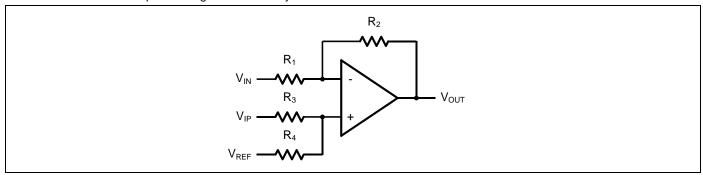


Figure 4. Differential Amplifier

$$V_{\text{GIT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{\text{OT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

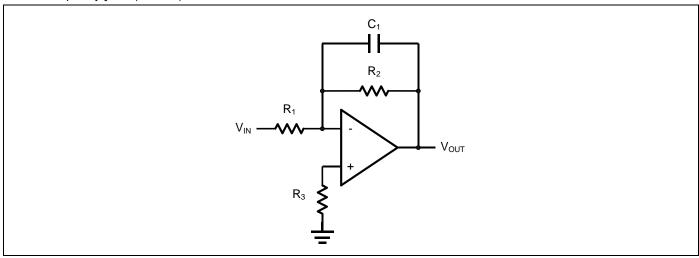
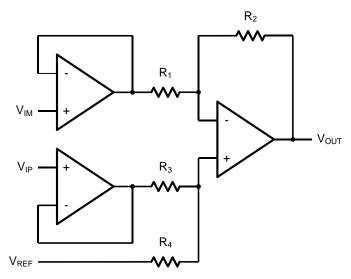
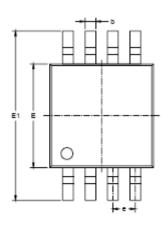


Figure 5. Low Pass Active Filter

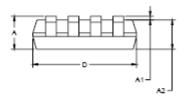
Instrumentation Amplifier

The triple MA600X family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.



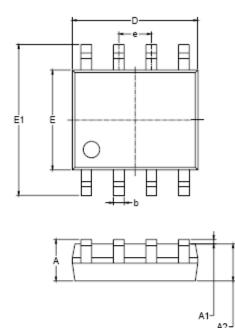

Figure 6. Instrument Amplifier

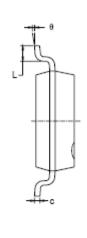
.



Package Information

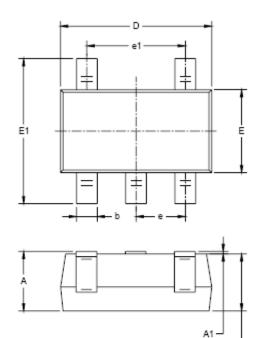
MSOP-8

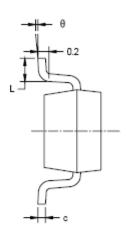




Symbol	Dimen In Milli		Dimensions In Inches		
,	MIN MAX		MIN	MAX	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.008	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187 0.199		
e	0.650 BSC		0.026 BSC		
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

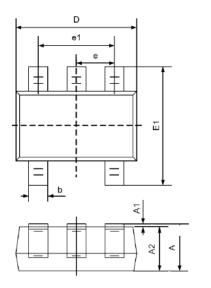
SOP-8

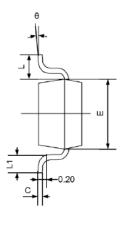



Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

SOT23-5

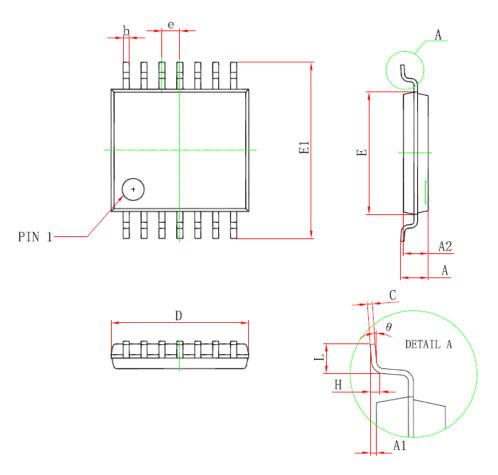
Mar. 2020 Rev. 1.1



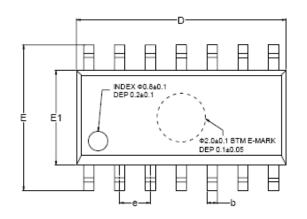


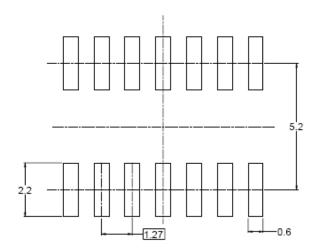
Symbol		nsions imeters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037 BSC		
e1	1.900	1.900 BSC		BSC	
L	0.300	0.300 0.600		0.024	
θ	0°	8°	o 0o 8o		

SC70-5

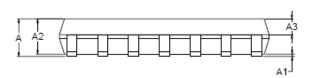


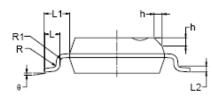
	Dimens	sions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650T	ΥP	0.026T	ΥP	
e1	1.200	1.400	0.047	0.055	
L	0.525REF		0.021REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0° 8°		


TSSOP-14



Symbol	Dimensions In	Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
D	4.900	5. 100	0. 193	0. 201	
E	4.300	4. 500	0.169	0.177	
ь	0.190	0.300	0.007	0.012	
с	0.090	0.200	0.004	0.008	
E1	6.250	6. 550	0.246	0.258	
A		1. 200		0.047	
A2	0.800	1.000	0.031	0.039	
A1	0.050	0.150	0.002	0.006	
e	0.65 (0.65 (BSC)		(BSC)	
L	0.500	0.700	0.020	0.028	
Н	0.25(TYP)		0.01(TYP)	
θ	1 °	7°	1 °	7°	




SOP-14

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters			Dimensions In Inches		
Symbol	MIN	MOD	MAX	MIN	MOD	MAX
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.004		0.010
A2	1.25		1.65	0.049		0.065
A3	0.55		0.75	0.022		0.030
b	0.36		0.49	0.014		0.019
D	8.53		8.73	0.336		0.344
E	5.80		6.20	0.228		0.244
E1	3.80		4.00	0.150		0.157
е		1.27 BSC		0.050 BSC		
L	0.45		0.80	0.018		0.032
L1	1.04 REF				0.040 REF	
L2	0.25 BSC			0.01 BSC		
R	0.07			0.003		
R1	0.07			0.003		
h	0.30		0.50	0.012		0.020
θ	0°		8°	0°		8°

15

Mar. 2020 Rev. 1.1

http://www.cbcv.net

IMPORTANT NOTICE

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2021.