

Features

- Wide Supply Voltage Range
- Single Supply: 2.0V to 36V
- Dual Supplies: ±1.0V to ±18V
- Low Supply Current at VCC=5V: 0.4mA
- Low Input Bias Current: 25nA (Typ)
- Low Input Offset Current: 5nA (Typ)
- Low Input Offset Voltage: ±1mV (Typ)
- Input Common Mode Voltage Range Includes
 Ground

- Differential Input Voltage Range Equals to the Power Supply Voltage
- Low Output Saturation Voltage: 200mV at 4mA
- Open Collector Output
- Small Package: MB331 Available in SOT23-5 Package

General Description

The MB331 consists of a single precision voltage comparator with a typical input offset voltage of 1.0mV and high voltage gain. It is specifically designed to operate from a single power supply over wide range of voltages. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

The MB331 is available in standard SOT-23-5 package.

Applications

- Battery Charger
- Cordless Telephone
- Switching Power Supply

- DC-DC Module
- PC Motherboard
- Communication Equipment

Pin Configuration

Figure 1. Pin Assignment Diagram

Functional Block Diagram

Figure 2. Functional Block Diagram of MB331

Absolute Maximum Ratings

Condition	Symbol	Мах
Power Supply Voltage	Vcc	± 20 V or 40V
Differential input voltage	V _{I(DIFF)}	40V
Input Voltage	VI	-0.3V~40V
Operating Junction Temperature	TJ	150°C
Storage Temperature Range	Tstg	-65°C ~+150°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Max-imum Ratings" for extended periods may affect device reliability.

Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collectorbase junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 VDC at 25°C).

Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION	
MB331	Single	MB331-TR	SOT23-5	Tape and Reel,3000	331	

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	2	36	v
Operating Temperature Range	T _A	-40	85	°C

Electrical Characteristics

VCC=5V, GND=0V, TA=25oC, unless otherwise specified. Bold typeface applies over TA=-40 to 85oC (Note 3)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Louis Officer Value	V	$V_{OS} = V_{OUT} = 1.4 V, V_{CC} = 5 \text{ to } 30 V$			1	5	mV
input Offset Voltage	VOS					7.0	
I ID C	т	I_{IN} + or I_{IN} - with output in linear range, V_{CM} =0V			25	250	nA
Input Bias Current	¹ B					400	
Innut Officet Courset	T	L+L, V.			5	50	nA
input Offset Current	IO	$1_{IN}^{+} 1_{IN}^{-}, V_{CM}^{=} 0 V$				200	
Input Common Mode Voltage Range (Note 4)		V _{CC} =30V		0		V _{CC} -1.5	v
	- 24	R _{L=} ∞	V _{CC} =5V	1	0.4	1.0	mA
Supply Current	T					2.0	
	+CC		V _{CC} =30V		0.5	1.7	
						3.0	
Voltage Gain	G _V	V_{CC} =15V, $R_L \ge 15k\Omega$, V_{OUT} =1 to 11V		50	200		V/mV
Large Signal Response Time		V_{IN} =TTL Logic Swing, R_L =5.1k Ω			200		ns
Response Time		$R_L=5.1k\Omega$			1.3		μs
Output Sink Current	I _{SINK}	V _{IN} -=1V, V _{IN} +=0V, V _{OUT} =1.5V		6.0	16		mA
Output Leakage Current	I _{LEAK}	V _{IN} -=0V, V _{IN} +=1V, V _{OUT} =5V			0.1		nA
		V _{IN} -=0V, V _{IN} +=1V, V _{OUT} =30V				1	μA
Saturation Voltage	V	$V_{IN}=1V, V_{IN}=0V, I_{SINK}\leq 4mA$		1	200	400	mV
	V SAT					500	

Note 3: These specifications are limited to -40oC < TA < 85oC. Limits over temperature are guaranteed by design, but not tested in production.

Note 4: The input common mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25°C). The upper end of the common mode voltage range is VCC-1.5V (at 25°C), but either or both inputs can go to 18V without damages, independent of the magnitude of the VCC.

Typical Performance characteristics

Figure 4. Supply Current vs. Supply Voltage

R,=5.1KΩ

V_{cc}=5V

- V_{cc}=30V

1

100

120

80

Figure 5. Supply Current vs. Case Temperature

Figure 6. Input Offset Voltage vs. Case Temperature

40

Case Temperature (°C)

60

Figure 7. Saturation Voltage vs. Case Temperature

1.1

1.0

0.9

0.7

0.6

0.5

0.4

-40

-20

0

20

Input Offset Voltage (mV)

Typical Performance characteristics (Continued)

Figure 8. Saturation Voltage vs. Output Sink Current

Figure 10. Response Time vs. Load Capacitor

Figure 9. Response Time vs. Case Temperature

Figure 11. Response Time vs. Input Overdrive Voltage

Typical Performance characteristics (Continued)

Figure 12. Response Time vs. Supply Voltage

Figure 13. Response Time vs. Supply Voltage

Figure 14. Response Time for Positive Transition

Figure 15. Response Time for Negative Transition

Typical Performance characteristics (Continued)

Figure 16. Response Time for Positive Transition

Figure 17. Response Time for Negative Transition

Figure 18. 100kHz Response

Figure 19. 100kHz Response

Typical Performance characteristics (Continued)

MB331

LOW POWER LOW OFFSET VOLTAGE SINGLE COMPARATOR

Typical Applications

Figure 21. Basic Comparator

Figure 23. One Shot Multivibrator

Package Information

SOT23-5

Dimer In Milli	isions imeters	Dimensions In Inches		
MIN	MAX	MIN	MAX	
1.050	1.250	0.041	0.049	
0.000	0.100	0.000	0.004	
1.050	1.150	0.041	0.045	
0.300	0.500	0.012	0.020	
0.100	0.200	0.004	0.008	
2.820	3.020	0.111	0.119	
1.500	1.700	0.059	0.067	
2.650	2.950	0.104	0.116	
0.950	BSC	0.037 BSC		
1.900	BSC	0.075 BSC		
0.300	0.600	0.012	0.024	
0°	8°	0°	8°	
	Dimen In Milli MIN 1.050 0.000 1.050 0.300 0.100 2.820 1.500 2.850 0.950 1.900 0.300 0.300 0°	Dimensions In Millimeters MIN MAX 1.050 1.250 0.000 0.100 1.050 1.150 0.300 0.500 0.100 0.200 2.820 3.020 1.500 1.700 2.650 2.950 0.950 BSC 1.900 BSC 0.300 0.600 0° 8°	Dimensions In Millimeters Dimensions In In MIN MAX MIN 1.050 1.250 0.041 0.000 0.100 0.000 1.050 1.150 0.041 0.000 0.100 0.000 1.050 1.150 0.041 0.300 0.500 0.012 0.100 0.200 0.004 2.820 3.020 0.111 1.500 1.700 0.059 2.650 2.950 0.104 0.950 BSC 0.037 1.900 BSC 0.075 0.300 0.600 0.012 0° 8° 0°	

http://www.cbcv.net

IMPORTANT NOTICE

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2021.