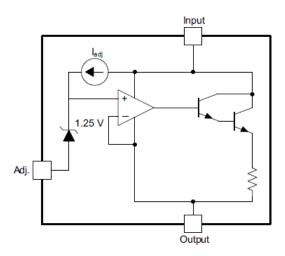


Features

- Output current greater than 1.5A
- Range Output voltage range adjustable from 1.25V to 37V

Applications


- Power Management for Computer Mother Board, Graphic Card
- LCD Monitor and LCD TV
- DVD Decode Board
- ADSL Modem
- Post Regulators for Switching Supplies

General Description

The MB317 device is an adjustable three-terminal positive-voltage regulator capable of supplying more than 1.5A over an output-voltage range of 1.25V to 37V. MB317 features a very low standby current 1.5mA.

MB317 is available in TO220 package.

Block Diagram

Pin Configuration

TO220 Top View

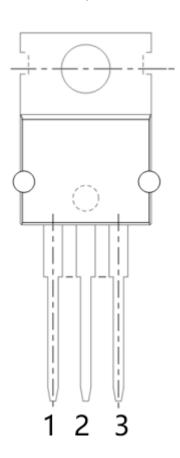


Table1: MB317 series (TO220 PKG)

PIN NO.	PIN NAME	FUNCTION
1	ADJ	ADJ pin
2	VOUT	Output voltage pin
3	VIN	Input voltage pin

Absolute Maximum Ratings

Max Input Voltage ······	40V
Max Operating Junction Temperature(Tj)	150℃
Ambient Temperature(Ta) · · · · · · · · · · · · · · · · · · ·	-20℃~ 85℃
Storage Temperature(Ts)	-40℃~150℃

Caution: Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

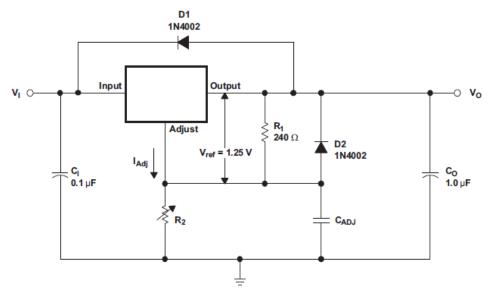
Thermal Information

Symbol	Parameter	TO220	UNIT
R _(JA)	Junction-to-ambient thermal resistance	37.9	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	51.1	°C/W
R ₀ JB	Junction-to-board thermal resistance	23.2	°C/W
$\Psi_{ m JT}$	Junction-to-top characterization parameter	13.0	°C/W
$\Psi_{_{ m JB}}$	Junction-to-board characterization parameter	22.8	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	4.2	°C/W

Electrical Characteristics

T_A=25°C, unless otherwise noted.

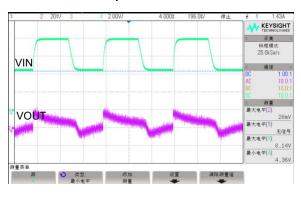
Parameter	Test Conditions		Min	Тур	Max	Unit
Line regulation	VI-VO=3V to 40V	Tj=25℃	-5		5	mV
Load regulation	Io=10mA to 1500mA		-25		25	mV
Reference viltage	$V_I - V_O$ =3V to 40V, $P_D \le 20$ W, I_O =10mA to 1.5A		1.2	1.25	1.3	V
Output-voltage	T _J = 0°C to 125°C			0.7		%Vo
Temperature stability						
Maximum output current	n output current $V_I - V_O \le 15V$, $T_J = 25^{\circ}C$		1.5	2		Α


Detailed Description

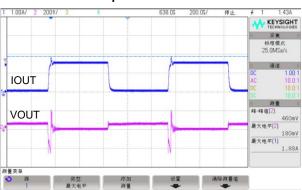
MB317 device is an adjustable three-terminal positive-voltage regulator capable of supplying up to 1.5A over an output-voltage range of 1.25V to 37V. It requires only two external resistors to set the output voltage. The device features a typical line regulation of 1mV and typical load regulation of 7 mV.

The MB317 device is versatile in its applications, including uses in programmable output regulation and local on-card regulation. Or, by connecting a fixed resistor between the ADJUST and OUTPUT terminals, the MB317 device can function as a precision current regulator. An optional output capacitor can be added to improve transient response.

Typical Application

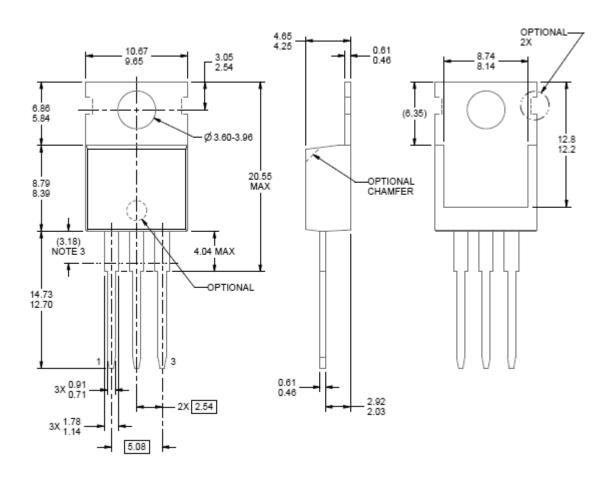

Adjustable Voltage Regulator

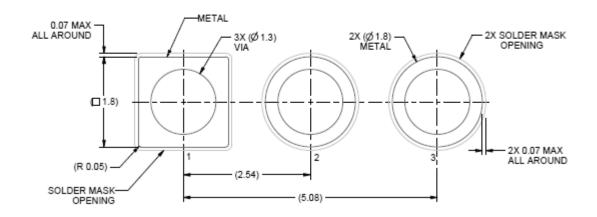
- 1. R1 and R2 are required to set the output voltage.
- 2. C_{ADJ} is recommended to improve ripple rejection. It prenents amplification of the ripple as the output voltage is adjusted higher.
- C_I is recommended, particularly if the regulator is not in clouse proximity to the power-supply filter capacitors. A
 0.1uF or 1uF ceramic or tantalum capacitor provides sufficient bypassing for most applications, especially when adjustment and output capacitors are used.
- 4. Co improves transient response, but is not needed for stability.
- 5. Protection diode D2 is recommended if C_{ADJ} is used. The diode provides a low-impedance discharge path to prevent the capacitor from discharging into the output of the regulator.
- 6. Protection diode D1 is recommended if C₀ is used. The diode provides a low-impedance diacharge path to prevent the capactior from discharging into the output of the regulator.
- 7. Vo is calculated as shown: $Vo = V_{REF}(1+R2/R1) + (I_{ADJ}xR2)$, I_{ADJ} is typically 50uA and negligible in most applications.



Typical Performance Characteristics

Line Transient Response


Load Transient Response



Package Information

TO220 Package

http://www.cbcv.net

IMPORTANT NOTICE

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2021.