

#### **Features**

- Input voltage:1.5V~8V
- Output range:1.2V~5.0V
- Maximum output current: 400mA @ VOUT=3.3V
- PSRR: 60dB @1KHz

- Dropout voltage:180mV @ IOUT=100mA
- Quiescent current: 0.5μA Typ.
- Shut-down current: <1µA</p>
- Recommend capacitor:1µF
- Built-in Short-Circuit Protection, Current

Limiter

# **Applications**

- Radio control systems
- Cellphones, radiophone, digital cameras
- Bluetooth, wireless handsets
- Others portable consumer equipments

#### **General Description**

The MB6214 is a high accuracy, low noise, high speed CMOS Linear regulator with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The devices offer a new level of cost effective performance in cellular phones, laptop and notebook computers, and other portable

devices.

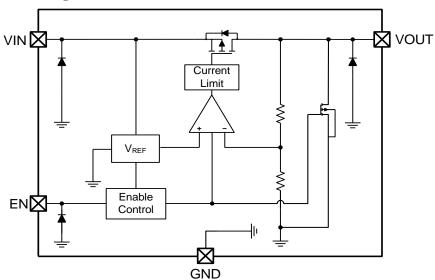
The current limiter's fold-back circuit also operates as a short circuit protection and an output current limiter at the output pin.

The MB6214 regulators are available in standard SOT23-3, SOT23-5 and DFN1\*1-4 packages. Standard products are Pb-free and Halogen-free.

#### **Selection Table**

| Part No.     | Package  | Temperature   | Tape & Reel |
|--------------|----------|---------------|-------------|
| MB6214-XXMR  | SOT23-3  | -40 ~ +125°C  | 3000/REEL   |
| MB6214-XXM5R | SOT23-5  | -40 ~ +125 °C | 3000/REEL   |
| MB6214-XXFCR | DFN1*1-4 | -40 ~ +125°C  | 10000/REEL  |

Note: XX indicates 1.2V~5.0V by 0.1V step. For example, 28 means product outputs 2.8V


#### **Order Information**

MB6214-1)2345

| Designator | Symbol                           | Description       |  |
|------------|----------------------------------|-------------------|--|
| 12         | Integer Output Voltage(1.2~5.0V) |                   |  |
|            | М                                | Package:SOT23-3   |  |
| 34         | M5                               | Package:SOT23-5   |  |
|            | FC                               | Package: DFN1*1-4 |  |
| (5)        | R                                | RoHS / Pb Free    |  |
| 3)         | G                                | Halogen Free      |  |



# **Block Diagram**



# **Pin Assignment**

SOT23-3 (Top View)

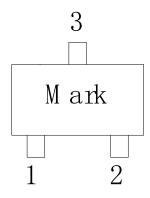



Table1: MB6214-XXMR series (SOT23-3 PKG)

| PIN NO. | PIN NAME | FUNCTION           |
|---------|----------|--------------------|
| 1       | GND      | GND pin            |
| 2       | VOUT     | Output voltage pin |
| 3       | VIN      | Input voltage pin  |

SOT23-5 (Top View)

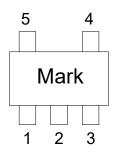



Table2: MB6214-XXM5R series (SOT23-5 PKG)

| PIN NO | PIN NAME | FUNCTION                          |
|--------|----------|-----------------------------------|
| 1      | VIN      | Input                             |
| 2      | GND      | Ground                            |
| 3      | EN       | Enable(Active high, not floating) |
| 4      | NC       | Not connected                     |
| 5      | VOUT     | Output                            |



Ultra Low Current Consumption 400mA CMOS Voltage Regulator

# **DFN1X1-4**

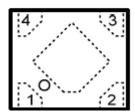



Table3: MB6214-XXFCR series (DFN1\*1-4PKG)

|        |          | •                                 |
|--------|----------|-----------------------------------|
| PIN NO | PIN NAME | FUNCTION                          |
| 1      | VOUT     | Output                            |
| 2      | GND      | Ground                            |
| 3      | EN       | Enable(Active high, not floating) |
| 4      | VIN      | Input                             |



# Ultra Low Current Consumption 400mA CMOS Voltage Regulator

# **Absolute Maximum Ratings**

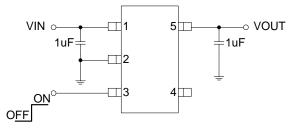
Input Voltage.......55  $^{\circ}$ C to 150  $^{\circ}$ C Output Current......450mA Storage Temperature ......260  $^{\circ}$ C Operating Temperature ......260  $^{\circ}$ C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

# **Thermal Information**

| Symbol         | Parameter                                                                           | Package  | Max. | Unit |
|----------------|-------------------------------------------------------------------------------------|----------|------|------|
|                |                                                                                     | SOT23-3  | 500  |      |
| $\theta_{JA}$  | Thermal Resistance (Junction to Ambient)  (Assume no ambient airflow, no heat sink) | SOT23-5  | 500  | °C/W |
|                |                                                                                     | DFN1*1-4 | 500  |      |
|                |                                                                                     |          | 0.40 |      |
| P <sub>D</sub> | Power Dissipation                                                                   | SOT23-5  | 0.40 | W    |
|                |                                                                                     | DFN1*1-4 | 0.40 |      |

Note:  $P_D$  is measured at Ta= 25  $^{\circ}$ C

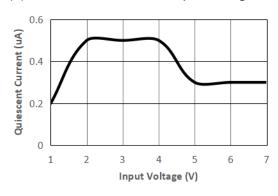

#### **Electrical Characteristics**

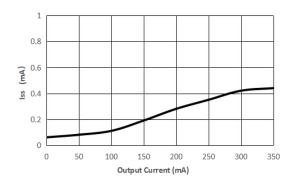
The following specifications apply for  $V_{OUT}=3.3V$ ,  $T_A=25$  °C, unless specified otherwise

| SYMBOL                         | ITEMS                                                  | CONDITIONS                                              | MIN | TYP  | MAX  | UNIT |
|--------------------------------|--------------------------------------------------------|---------------------------------------------------------|-----|------|------|------|
| V <sub>IN</sub>                | Input Voltage                                          |                                                         | 1.5 |      | 8    | V    |
| V <sub>оит</sub>               | Output Range                                           | I <sub>OUT</sub> =1mA                                   | -2  | Vouт | 2    | %    |
| lα                             | Quiescent Current                                      | V <sub>OUT</sub> =3.3V, I <sub>OUT</sub> =0             |     | 0.5  |      | μА   |
| I <sub>LIMIT</sub>             | Current Limit                                          | V <sub>IN</sub> =V <sub>EN</sub> =4.5V                  |     | 400  |      | mA   |
| V                              | Drang, at Voltage                                      | Vout=3.3V, lout=100mA                                   |     | 180  |      | \/   |
| V <sub>DROP</sub>              | Dropout Voltage                                        | V <sub>OUT</sub> =3.3V, I <sub>OUT</sub> =200mA         |     | 400  |      | mV   |
| $\triangle V_{LINE}$           | Line Regulation                                        | V <sub>IN</sub> =2.7~5.5V, I <sub>OUT</sub> =1mA        |     | 0.01 | 0.15 | %/V  |
| $\triangle V_{LOAD}$           | Load Regulation                                        | Vоит=3.3V, Iouт=1~300mA                                 |     | 200  |      | mV   |
| I <sub>SHORT</sub>             | Short Current                                          | $V_{EN}=V_{IN}$ , $V_{OUT}$ Short to GND with $1\Omega$ |     | 35   |      | mA   |
| Ishdn                          | Shut-down Current                                      | V <sub>EN</sub> =0V                                     |     |      | 1    | μΑ   |
| DODD                           | V <sub>IN</sub> =5V <sub>DC</sub> +0.5V <sub>P-P</sub> |                                                         |     |      |      | dB   |
| PSRR Power Supply Rejection Ra |                                                        | F=1KHz, I <sub>OUT</sub> =10mA                          |     | 60   |      |      |
| V <sub>ENH</sub>               | EN logic high voltage                                  | V <sub>IN</sub> =5.5V, I <sub>OUT</sub> =1mA            | 1.2 |      | VIN  | V    |
| V <sub>ENL</sub>               | EN logic low voltage                                   | V <sub>IN</sub> =5.5V, V <sub>OUT</sub> =0V             |     |      | 0.4  | V    |
| I <sub>EN</sub>                | EN Input Current                                       | V <sub>EN</sub> = 0 to 5.5V                             |     |      | 1    | μΑ   |

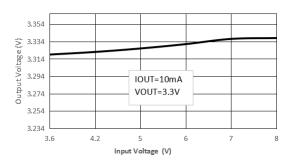


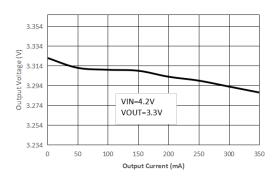
# **Application Circuits**



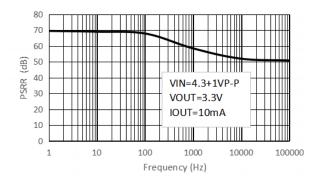


# **Typical Performance Characteristics**

 $C_{\text{IN}}=1uF$ ,  $C_{\text{OUT}}=1uF$ ,  $V_{\text{IN}}=4.5V$ ,  $V_{\text{OUT}}=3.3V$ , SOT23-5,  $T_{\text{A}}=25^{\circ}C$ 


(Unless specified otherwise.Package:SOT23-5L)

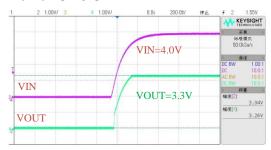

# (1) Quiescent current vs Input voltage

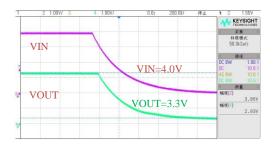





# (2) Output Voltage vs Input voltage

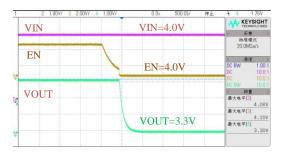




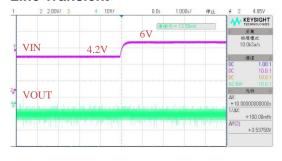


# (3) PSRR vs Frequency

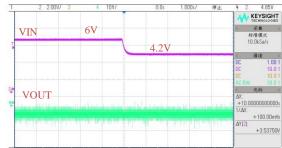


# Ultra Low Current Consumption 400mA CMOS Voltage Regulator

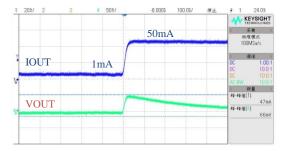

#### Power ON / OFF

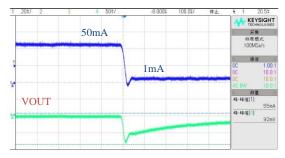






#### **EN ON/OFF**







#### **Line Transient**





#### **Load Transient**





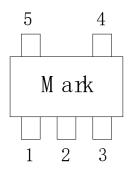


#### **Application Information**

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current.

A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC-DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductance of the power leads. A large voltage spike is created when the stored energy is


transferred from these inductance into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step.

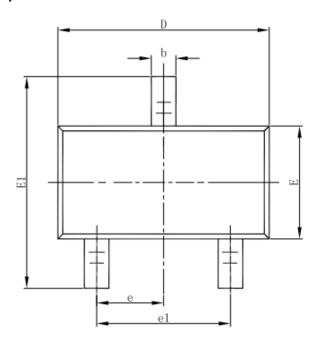
Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multi layer ceramic capacitors (MLCC). Because of the self-resonant be generated under some start-up conditions, such as connecting the LDO input to a live power source.

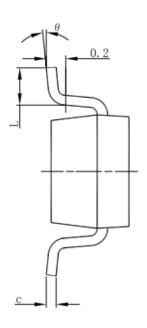
The LDO also requires an output capacitor for loop stability. Connect a 1uF tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.

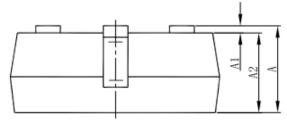
Ultra Low Current Consumption 400mA CMOS Voltage Regulator

# **Marking Description**




①product code: 4 ②output voltage code:

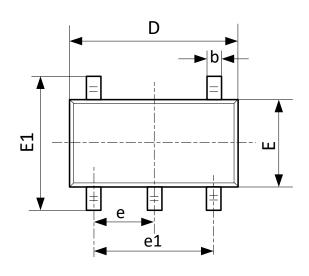

| <u> </u> | vollage eeal |          |            |         |            |         |            |
|----------|--------------|----------|------------|---------|------------|---------|------------|
| Symbol   | Voltage(V)   | Symbol   | Voltage(V) | Symbol  | Voltage(V) | Symbol  | Voltage(V) |
| Суппоот  | voltago(v)   | Cyllibol | voltago(v) | Суппост | voltago(v) | Суппост | voltago(v) |
| а        | 0.9          | Α        | 3.5        | n       | 2.2        | N       | 4.8        |
| b        | 1.0          | В        | 3.6        | 0       | 2.3        | 0       | 4.9        |
| С        | 1.1          | О        | 3.7        | Р       | 2.4        | Р       | 5.0        |
| d        | 1.2          | D        | 3.8        | q       | 2.5        | Q       | 5.1        |
| е        | 1.3          | Е        | 3.9        | r       | 2.6        | R       | 5.2        |
| f        | 1.4          | F        | 4.0        | S       | 2.7        | S       | 5.3        |
| g        | 1.5          | G        | 4.1        | t       | 2.8        | Т       | 5.4        |
| h        | 1.6          | Τ        | 4.2        | u       | 2.9        | U       | 5.5        |
| i        | 1.7          |          | 4.3        | ٧       | 3.0        | V       | 5.6        |
| j        | 1.8          | J        | 4.4        | W       | 3.1        | W       | 5.7        |
| k        | 1.9          | K        | 4.5        | Х       | 3.2        | Χ       | 5.8        |
|          | 2.0          | Ĺ        | 4.6        | у       | 3.3        | Υ       | 5.9        |
| m        | 2.1          | М        | 4.7        | Z       | 3.4        | Z       | 6.0        |

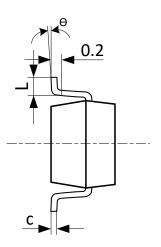

34: The last two of them are based on the time of this product which is the first time into production, the third is the year of this product first time into production, such as expressed in "1" in 2021, in "2" in 2022 and the forth is the mouth of this product first time into production, it can be in 1  $\sim$  9, which is expressed in "0" in October, in November with an "A", in December with "B"; . For example: 4y16 represents MB6214-33M5R product is first put into production in June in 2021.

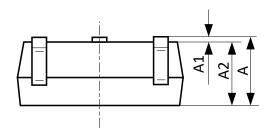


# Package Information 3-pin SOT23-3 Outline Dimensions





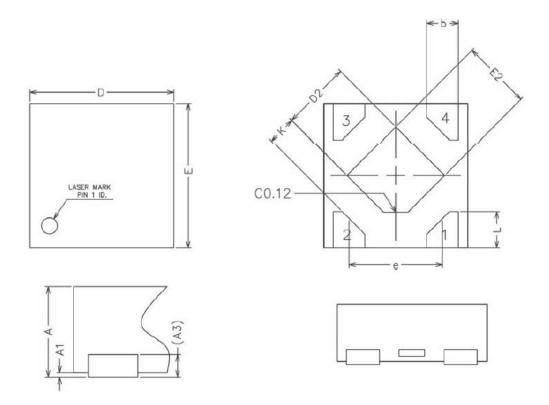





| Comb a l | Dimensions In | Millimeters | Dimensions | In Inches |
|----------|---------------|-------------|------------|-----------|
| Symbol   | Min           | Max         | Min        | Max       |
| Α        | 1.050         | 1.250       | 0.041      | 0.049     |
| A1       | 0.000         | 0.100       | 0.000      | 0.004     |
| A2       | 1.050         | 1.150       | 0.041      | 0.045     |
| b        | 0.300         | 0.500       | 0.012      | 0.020     |
| С        | 0.100         | 0.200       | 0.004      | 0.008     |
| D        | 2.820         | 3.020       | 0.111      | 0.119     |
| E        | 1.500         | 1.700       | 0.059      | 0.067     |
| E1       | 2.650         | 2.950       | 0.104      | 0.116     |
| е        | 0.950         | 0.950(BSC)  |            | BSC)      |
| e1       | 1.800         | 2.000       | 0.071      | 0.079     |
| L        | 0.300         | 0.600       | 0.012      | 0.024     |
| θ        | 0°            | 8°          | 0°         | 8°        |



# **SOT23-5** Outline Dimensions








| Consideral. | Dimensions I | n Millimeters | Dimensions In Inches |       |  |
|-------------|--------------|---------------|----------------------|-------|--|
| Symbol      | Min          | Max           | Min                  | Max   |  |
| А           | 1.050        | 1.250         | 0.041                | 0.049 |  |
| A1          | 0.000        | 0.100         | 0.000                | 0.004 |  |
| A2          | 1.050        | 1.150         | 0.041                | 0.045 |  |
| b           | 0.300        | 0.500         | 0.012                | 0.020 |  |
| С           | 0.100        | 0.200         | 0.004                | 0.008 |  |
| D           | 2.820        | 3.020         | 0.111                | 0.119 |  |
| Е           | 1.500        | 1.700         | 0.059                | 0.067 |  |
| E1          | 2.650        | 2.950         | 0.104                | 0.116 |  |
| е           | 0.950(BSC)   |               | 0.037                | (BSC) |  |
| e1          | 1.800        | 2.000         | 0.071                | 0.079 |  |
| L           | 0.300        | 0.600         | 0.012                | 0.024 |  |
| θ           | 0℃           | 8℃            | 0℃                   | 8℃    |  |



# **DFN1\*1-4** Outline Dimensions



COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

| SYMBOL | MIN  | NOM      | MAX  |
|--------|------|----------|------|
| Α      | 0.34 | 0.37     | 0.40 |
| A1     | 0.00 | 0.02     | 0.05 |
| A3     |      | 0.100REF |      |
| b      | 0.17 | 0.22     | 0.27 |
| D      | 0.95 | 1.00     | 1.05 |
| E      | 0.95 | 1.00     | 1.05 |
| D2     | 0.43 | 0.48     | 0.53 |
| E2     | 0.43 | 0.48     | 0.53 |
| L      | 0.20 | 0.25     | 0.30 |
| е      | _    | 0.65     | _    |
| K      | 0.15 | _        | _    |





http://www.cbcv.net

#### **IMPORTANT NOTICE**

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2022.