

2-Lines, Uni-directional, Ultra-low Capacitance Transient Voltage Suppressors

Descriptions

The ESD5302F is an ultra-low capacitance TVS (Transient Voltage Suppressor) array designed to protect high speed data interfaces. It has been specifically designed to protect sensitive electronic components which are connected to data and transmission lines from over-stress caused by ESD (Electrostatic Discharge).

The ESD5302F incorporates two pairs of ultra- low capacitance steering diodes plus a TVS diode.

The ESD5302F may be used to provide ESD protection up to ± 20 kV (contact and air discharge) according to IEC61000-4-2, and withstand peak pulse current up to 4A (8/20µs) according to IEC61000-4-5.

The ESD5302F is available in SOT-23 package. Standard products are Pb-free and Halogen-free.

Features

- Stand-off voltage: 5V Max
- Transient protection for each line according to IEC61000-4-2 (ESD): ±20kV (contact and air discharge) IEC61000-4-4 (EFT): 40A (5/50ns)
 IEC61000-4-5 (surge): 4A (8/20µs)
- Ultra-low capacitance: C_J = 0.4pF typ.
- Ultra-low leakage current: I_R <1nA typ.
- Low clamping voltage: V_{CL} = 20V @ I_{PP} = 16A(TLP)
- Solid-state silicon technology

Applications

- USB 2.0 and USB 3.0
- HDMI 1.3 and HDMI 1.4
- SATA and eSATA
- DVI
- IEEE 1394
- PCI Express
- Portable Electronics
- Notebooks

SOT-23 (Top View)

Order information

Device	Package	Shipping		
ESD5302F-3/TR	SOT-23	3000/Tape&Reel		

Absolute maximum ratings

Parameter	Symbol	Rating	Unit	
Peak pulse power ($t_p = 8/20\mu s$)	P _{pk}	60	W	
Peak pulse current ($t_p = 8/20\mu s$)	IPP	4	А	
ESD according to IEC61000-4-2 air discharge		±20		
ESD according to IEC61000-4-2 contact discharge	VESD	±20	κv	
Junction temperature	TJ	125	٥C	
Operating temperature	T _{OP}	-40~85	°C	
Lead temperature	ΤL	260	°C	
Storage temperature	T _{STG}	-55~150	°C	

Electrical characteristics (T_A=25 °C, unless otherwise noted)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Reverse maximum working voltage	Vrwm				5.0	V
Reverse leakage current	I _R	V _{RWM} = 5V		<1	100	nA
Reverse breakdown voltage	V_{BR}	I _T = 1mA	7.0	8.0	9.0	V
Forward voltage	VF	I _T = 10mA	0.6	0.9	1.2	V
Clamping voltage 1)	Vcl	I _{PP} = 16A, t _p = 100ns		20		V
Dynamic resistance 1)	Rdyn			0.65		Ω
Clamping voltage 2	VcL	$I_{PP} = 1A, t_p = 8/20 \mu s$			11	V
		$I_{PP} = 4A, t_p = 8/20 \mu s$			15	V
Junction capacitance	CJ	V _R = 0V, f = 1MHz Any I/O pin to GND		0.40	0.65	pF
		V _R = 0V, f = 1MHz Between any I/O pin		0.25	0.40	pF

Notes:

1) TLP parameter: $Z_0 = 50 \Omega$, $t_p = 100$ ns, $t_r = 2$ ns, averaging window from 60ns to 80ns. R_{DYN} is calculated from 4A to 16A.

2) According to IEC61000-4-5.

Typical characteristics (T_A=25°C, unless otherwise noted)

8/20µs waveform per IEC61000-4-5

Contact discharge current waveform per IEC61000-4-2

Clamping voltage vs. Peak pulse current

Non-repetitive peak pulse power vs. Pulse time

0.50 C_J - Junction capacitance (pF) f = 1MHz 0.45 Pin1 or 2 to Pin3 0.40 0.35 0.30 Between Pin1 and Pin2 0.25 0.20 L 0 1 2 3 4 5 V_{R} - Reverse voltage (V)

Capacitance vs. Reverse voltage

Typical characteristics (T_A=25°C, unless otherwise noted)

ESD clamping (+8kV contact discharge per IEC61000-4-2)

TLP Measurement

ESD clamping (-8kV contact discharge per IEC61000-4-2)

Application Information

The ESD5302F is designed to protect two high speed line against ESD. Fig1 is shown the connection and Fig2 is shown PCB Layout guide for USB interface ESD protection

Fig2

Package outline dimensions

SOT-23

	Cumhal	Dimensions in millimeters			
	Symbol	Min. Typ.		Max.	
	А	0.900	-	1.150	
	A1	0.000	-	0.100	
	A2	0.900	-	1.050	
_	b	0.300	-	0.500	
	С	0.080	-	0.150	
	D	2.800	-	3.000	
	E	1.200	-	1.400	
	E1	2.250	-	2.550	
	е	0.950TYP			
	e1	1.800	-	2.000	
	L	0.550REF			
	L1	0.300	-	0.500	
	θ	0°	-	8°	

Recommend land pattern (Unit: mm)

Notes:

This recommended land pattern is for reference purposes only. Please consult your manufacturing group to ensure your PCB design guidelines are met.

TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	7inch	13inch		
W	Overall width of the carrier tape	🕑 8mm	🗌 12mm	🗌 16mm	
P1	Pitch between successive cavity centers	🗌 2mm	🔽 4mm	8mm	
Pin1	Pin1 Quadrant	🗌 Q1	🗌 Q2	✓ Q3	🗌 Q4

http://www.cbcv.net

IMPORTANT NOTICE

CBC Microelectronics Co., Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein or to discontinue any product or service. Customers should obtain the latest relevant information before placing orders and should verify the latest and complete information. CBC Microelectronics does not assume any responsibility for use of any product, nor does CBC Microelectronics any liability arising out of the application or use of this document or any product or circuit described herein. CBC Microelectronics assumes no liability for applications assistance or the design of Customers' products. Customers are responsible for their products and applications using CBC Microelectronics components. CBC Microelectronics does not convey any license under its patent or trademark rights nor the other rights.

CBC Microelectronics Co., Ltd © 2004-2021.